Imputing manufacturing material in data mining
نویسندگان
چکیده
Data plays a vital role as a source of information to organizations, especially in times of information and technology. One encounters a not-so-perfect database from which data is missing, and the results obtained from such a database may provide biased or misleading solutions. Therefore, imputing missing data to a database has been regarded as one of the major steps in data mining. The present research used different methods of data mining to construct imputative models in accordance with different types of missing data. When the missing data is continuous, regression models and Neural Networks are used to build imputative models. For the categorical missing data, the logistic regression model, neural network, C5.0 and CART are employed to construct imputative models. The results showed that the regression model was found to provide the best estimate of continuous missing data; but for categorical missing data, the C5.0 model proved the best method.
منابع مشابه
A data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing)
Training and adaption of employees are time and money consuming. Employees’ turnover can be predicted by their organizational and personal historical data in order to reduce probable loss of organizations. Prediction methods are highly related to human resource management to obtain patterns by historical data. This article implements knowledge discovery steps on real data of a manufacturing pla...
متن کاملApplication of Kansei engineering and data mining in the Thai ceramic manufacturing
Ceramic is one of the highly competitive products in Thailand. Many Thai ceramic companies are attempting to know the customer needs and perceptions for making favorite products. To know customer needs is the target of designers and to develop a product that must satisfy customers. This research is applied Kansei Engineering (KE) and Data Mining (DM) into the customer driven product design proc...
متن کاملA Data Mining approach for forecasting failure root causes: A case study in an Automated Teller Machine (ATM) manufacturing company
Based on the findings of Massachusetts Institute of Technology, organizations’ data double every five years. However, the rate of using data is 0.3. Nowadays, data mining tools have greatly facilitated the process of knowledge extraction from a welter of data. This paper presents a hybrid model using data gathered from an ATM manufacturing company. The steps of the research are based on CRISP-D...
متن کاملIterative Non - Parametric Method for Manipulating Missing Values of Heterogeneous Datasets by Clustering Fatigue and Corrosion Fatigue Behavior of Nickel Alloys in Saline Solutions
-Machine learning and data mining retort heavily on a large amount of data to build learning models and make predictions. There is a need for quality of data, thus the quality of data is ultimately important. Many of the industrial and research databases are plagued by the problem of missing values. A variety of methods have been developed with great success on dealing with missing values in da...
متن کاملData Mining for Selection of Manufacturing Processes
Data Mining tools extract knowledge from large databases. The data generated in manufacturing has not been entirely exploited. This chapter discusses applications of Data Mining in a manufacturing environment. A methodology for selection of manufacturing processes is proposed and illustrated with an industrial scenario.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Intelligent Manufacturing
دوره 19 شماره
صفحات -
تاریخ انتشار 2008